Water chemistry alters gene expression and physiological end points of chronic waterborne copper exposure in zebrafish, Danio rerio.
نویسندگان
چکیده
This is the first study to implement a genomic approach to ascertain both transcriptional and functional end points of chronic Cu toxicity in fish associated with experimentally manipulated water chemistries. Over 21 d, zebrafish acclimated to softwater (Na(+) = 0.06 mM, Ca(2+) = 0.08 mM, Mg(2+) = 0.03 mM) were exposed to the following: soft-water (Ctrl); 12 microg L(-1) Cu (Cu); 3.3 mM Na(+) (Na); 3.3 mM Na(+) + 12 microg L(-1) Cu (Na + Cu); 3.3 mM Ca(2+) (Ca); or 3.3 mM Ca(2+) + 12 microg L(-1) Cu (Ca + Cu). Although effective at reducing Cu load in all tissues, Na(+) in the presence of Cu did not decrease the degree of oxidative damage, particularly in the gill and gut. In contrast, Ca + Cu treatment decreased Cu accumulation in gill, but not liver or gut, with no reduction in oxidative damage. Transcriptional analysis of candidate genes (atp7a, ctr1, ECaC, esr1) showed principally a down regulation of transcripts with the Cu only treatment, while Ca + Cu treatment restored some of the genes to control levels. Conversely, the Na + Cu treatment had a strong, opposing affect when compared to that of Cu alone. Zebrafish Affymetrix GeneChips revealed significantly clustered patterns of expression. Changes in expression induced by Cu appeared to be opposite to the majority of the other treatments. Our data on the preventative or enhancing effects of Na(+) and Ca(2+) both alone and in the presence of Cu, may, in the future, facilitate the incorporation of gene expression end points into a biotic ligand model predicting chronic Cu toxicity in this tropical model species of genomic importance.
منابع مشابه
Dietary iron alters waterborne copper-induced gene expression in soft water acclimated zebrafish (Danio rerio).
Metals like iron (Fe) and copper (Cu) function as integral components in many biological reactions, and, in excess, these essential metals are toxic, and organisms must control metal acquisition and excretion. We examined the effects of chronic waterborne Cu exposure and the interactive effects of elevated dietary Fe on gene expression and tissue metal accumulation in zebrafish. Softwater accli...
متن کاملGene expression endpoints following chronic waterborne copper exposure in a genomic model organism, the zebrafish, Danio rerio.
Although copper (Cu) is an essential micronutrient for all organisms, in excess, waterborne Cu poses a significant threat to fish from the cellular to population level. We examined the physiological and gene expression endpoints that chronic waterborne Cu exposure (21 d) imposes on soft-water acclimated zebrafish at two environmentally relevant concentrations: 8 microg/l (moderate) and 15 micro...
متن کاملHistopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles
The aim of this study was to investigate the histopathological changes in zebrafish larvae following embryonic exposure to nanoparticles of magnesium oxide (MgONPs). The toxicity of metal oxide nanoparticles is attracting increasing attention. Among these nanomaterials, MgONPs are particularly interesting as a low cost and environmentally-friendly material. Histological investigations are used ...
متن کاملHistopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles
The aim of this study was to investigate the histopathological changes in zebrafish larvae following embryonic exposure to nanoparticles of magnesium oxide (MgONPs). The toxicity of metal oxide nanoparticles is attracting increasing attention. Among these nanomaterials, MgONPs are particularly interesting as a low cost and environmentally-friendly material. Histological investigations are used ...
متن کاملOxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio).
In fish, environmental pollution is one factor that induces oxidative stress, and this can disturb the natural antioxidant defense system. Oxidative stress has been well characterized in vitro, yet the in vivo effects of metal-induced oxidative stress have not been extensively studied. In two experiments we examined the impacts of copper (Cu) on gene expression, oxidative damage, and cell oxida...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2010